References

Allen, V. F., Mason, R. \& Hitchcock, P. B. (1977). J. Organomet. Chem. 140, 297-307.

Churchill, M. R., Hollander, F. J., Shapley, J. R. \& K eister, J. B. (1980). Inorg. Chem. 19, 1272-1277.
Churchill, M. R. \& Lashewycz, R. A. (1979). Inorg. Chem. 18, 1926-1930.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Iwasaki, F., Mays, M. J., Raithby, P. R., Taylor, P. L. \& Wheatley, P. J. (1981). J. Organomet. Chem. 213, 185-206.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge. England.

1,1,1,1,2,2,2,3,3,3-Decacarbonyl-2,3- μ-hydrido-2,3- μ-trifluoroethylideneamido-triangulotriosmium

By Michael Laing and Polly Sommerville
Chemistry Department, University of Natal, Durban 4001, South Africa
and Peter J. Wheatley, Martin J. Mays and Zain Dawoodi
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 11 March 1981: accepted 1 June 1981)

Abstract

Os}_{3} \mathrm{H}(\mathrm{CO})_{10} \mathrm{~N}\left(\mathrm{CHCF}_{3}\right)\right], \quad M_{r}=947 \cdot 6\), monoclinic, $P 2_{1} / n, a=7.321$ (5), $b=29.21$ (1), $c=$ 9.364 (5) $\AA, \beta=100.55(5)^{\circ}, V=1968.9 \AA^{3}, D_{c}=$ 3.196, $D_{m}=3 \cdot 20(5) \mathrm{Mg} \mathrm{m}^{-3}, Z=4, \mu(\mathrm{Mo} K(\mathrm{t})=$ $20.63 \mathrm{~mm}^{-1} \cdot R=0.103$ for 2763 observed data. The Os atoms form a triangle of one $\mathrm{Os}(\mathrm{CO})_{4}$ group and two $\mathrm{Os}(\mathrm{CO})_{3}$ groups. The N of the $\mathrm{CF}_{3} \mathrm{CN}$ molecule bridges the two $\mathrm{Os}(\mathrm{CO})_{3}$ groups. One H is attached to the C of the nitrile group, the second is presumed to remain as an $\mathrm{Os}-\mathrm{H}-\mathrm{Os}$ bridge.

Introduction. Reaction of $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right]$ with the nitrile $\mathrm{CF}_{3} \mathrm{CN}$ yields two isomeric compounds of stoichiometry $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CF}_{3} \mathrm{CN}\right)\right]$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the major product (I) contains only one metal hydride resonance and a one-proton quartet assignable to a CHCF_{3} proton, suggesting that a hydride transfer has taken place. To ascertain the precise mode of bonding of the $\mathrm{CF}_{3}-\mathrm{CHN}$ group to the Os_{3} triangle, a crystallographic study of (I) was undertaken.

(I)

Suitable crystals were obtained by cooling a saturated hexane solution to 268 K . Data were collected from a crystal $0.3 \times 0.3 \times 0.3 \mathrm{~mm}$ on a Philips 0567-7408/81/122230-03\$01.00
four-circle diffractometer with graphite-monochromated Mo Ka radiation ($\lambda=0.7107 \AA$) for $3^{\circ}<\theta<$ 25° and index $k \leq 30$. The small separation between reflexions caused by the long b axis prevented individual backgrounds being measured for each reflexion, so the background correction was based entirely on the value of the angle θ. Of 3461 reflexions measured, 2763 were classed as observed $\mid I>2 \cdot 0 \sigma(I)]$.

The intensities of the three standard reflexions dropped by about 7% during the course of data collection. Because of this decomposition and the imprecision of the background correction, only Lorentz and polarization corrections were applied to the intensities. A temperature-sharpened Patterson map (Lipson \& Cochran, 1966) gave the coordinates of the three Os atoms, and subsequent Fourier maps yielded the coordinates of the lighter atoms. The structure was refined by block-diagonal least squares with the three Os atoms assigned anisotropic temperature factors. Weighting was proportional to $1 / \sigma(F)$. Scattering factors were for neutral atoms (International Tables for X-ray Crystallography, 1962); that of Os was corrected for anomalous dispersion. The H atoms could not be located. The final R was $0 \cdot 103$ for 2763 observed data.* The relatively high value of R is to

[^0]Table 1. Fractional atomic coordinates ($\times 10^{4}$, except for the Os y coordinates which are $\times 10^{5}$) and thermal parameters

	x	v	z	$B\left(\AA^{2}\right)$
Os(1)	1826 (2)	13751 (5)	1186 (2)	*
Os(2)	1092 (2)	17514 (5)	3817 (2)	
Os(3)	2605 (2)	8574 (5)	3746 (2)	*
N	696 (46)	798 (11)	1909 (36)	4.4 (7)
F(1)	-1226(71)	498 (18)	-934 (56)	14.8 (16)
F(2)	- 3031 (83)	872 (20)	--.82 (64)	17.6 (19)
F(3)	-2951 (74)	122 (18)	-30 (58)	$15 \cdot 2$ (16)
C(1)	-751 (52)	491 (13)	1644 (41)	$3 \cdot 5$ (8)
C(2)	-1841 (102)	519 (25)	334 (78)	10.3 (19)
C(11)	-355 (58)	1693 (14)	115 (45)	4.0 (8)
C(12)	2267 (56)	1077 (14)	-466 (44)	$4 \cdot 0$ (8)
C(13)	3389 (61)	1896 (15)	1011 (47)	4.5 (9)
C(21)	-1211(71)	1497 (17)	3302 (56)	$5 \cdot 7$ (11)
C(22)	234 (85)	2359 (21)	3042 (66)	7.9 (16)
C(23)	1227 (46)	1802 (12)	5805 (36)	$2 \cdot 6$ (6)
C(24)	3634 (85)	2007 (21)	4188 (66)	7.9 (15)
C(31)	1213 (69)	620 (18)	5030 (56)	$6 \cdot 1$ (12)
C(32)	3639 (67)	301 (16)	3433 (53)	$5 \cdot 4$ (11)
C(33)	4476 (66)	1017 (18)	5263 (53)	5.7 (11)
$\mathrm{O}(11)$	1519 (47)	1867 (12)	526 (36)	$6 \cdot 3$ (8)
$\mathrm{O}(12)$	2907 (63)	890 (16)	-1554 (51)	10.2 (13)
$\mathrm{O}(13)$	4491 (58)	2142 (15)	957 (47)	9.1 (11)
$\mathrm{O}(21)$	-2681 (61)	1315 (14)	3013 (48)	9.0 (11)
$\mathrm{O}(22)$	-302 (61)	2698 (15)	2673 (48)	9.0 (11)
$\mathrm{O}(23)$	776 (50)	1820 (12)	6941 (38)	$6 \cdot 7(8)$
$\mathrm{O}(24)$	5105 (46)	2098 (12)	4312 (36)	$6 \cdot 2(8)$
$\mathrm{O}(31)$	315 (56)	468 (14)	5812 (44)	$8 \cdot 7$ (11)
$\mathrm{O}(32)$	4593 (49)	-35 (12)	3218 (38)	$6 \cdot 9$ (9)
O(33)	5778 (46)	1156(11)	6176 (35)	$6 \cdot 0(7)$

* Anisotropic thermal parameters for the osmium atoms:
$\begin{array}{llllll}\beta_{11} & \beta_{22} & \beta_{33} & \beta_{12} & \beta_{13} & \beta_{23}\end{array}$
Os(1) $0.0157(3) \quad 0.00066(2) \quad 0.0066(2) 0.0005(1) 0.0067(4) \quad 0.00005(9)$ Os(2) 0.0196 (4) $0.00060(2) 0.0075$ (2) 0.0011 (1) $0.0086(4)-0.00050(10)$ $\begin{array}{llllll}\mathrm{Os}(3) & 0.0175(3) & 0.00049(2) & 0.0088 \text { (2) } & 0.0002 \text { (1) } & 0.0070(4) \\ 0.00041 \text { (9). }\end{array}$

The form of the expression is $\exp \mid-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} I^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k h\right)$.

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.803(5)$
$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.838(5)$
$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.842(5)$
$\mathrm{Os}(1)-\mathrm{N}$	$2.05(3)$
$\mathrm{Os}(3)-\mathrm{N}$	$2.02(3)$
$\mathrm{Os}(1)-\mathrm{C}(11)$	$1.96(3)$
$\mathrm{Os}(1)-\mathrm{C}(12)$	$1.85(3)$
$\mathrm{Os}(1)-\mathrm{C}(13)$	$1.93(3)$
$\mathrm{Os}(2)-\mathrm{C}(21)$	$1.83(3)$
$\mathrm{Os}(2)-\mathrm{C}(22)$	$1.98(3)$
$\mathrm{Os}(2)-\mathrm{C}(23)$	$1.85(3)$
$\mathrm{Os}(2)-\mathrm{C}(24)$	$1.98(3)$
$\mathrm{Os}(3)-\mathrm{C}(31)$	$1.85(3)$
$\mathrm{Os}(3)-\mathrm{C}(32)$	$1.84(3)$
$\mathrm{Os}(3)-\mathrm{C}(33)$	$1.84(3)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$59.1(3)$
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$60.5(3)$
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(1)$	$60.3(3)$
$\mathrm{Os}(1)-\mathrm{N}-\mathrm{Os}(3)$	$87.3(5)$
$\mathrm{N}-\mathrm{Os}(1)-\mathrm{Os}(3)$	$45.9(5)$
$\mathrm{N}-\mathrm{Os}(3)-\mathrm{Os}(1)$	$46.8(5)$
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(31)$	$135.1(5)$
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(32)$	$171.6(5)$
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(11)$	$135.5(5)$
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(12)$	$174.8(5)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$	$97.3(5)$
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(23)$	$98.5(5)$

$\mathrm{N}-\mathrm{C}(1)$	$1.38(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.34(5)$
$\mathrm{C}(2)-\mathrm{F}(1)$	$1.35(5)$
$\mathrm{C}(2)-\mathrm{F}(2)$	$1.36(5)$
$\mathrm{C}(2)-\mathrm{F}(3)$	$1.42(5)$
$\mathrm{C}(11)-\mathrm{O}(11)$	$1.08(5)$
$\mathrm{C}(12)-\mathrm{O}(12)$	$1.32(5)$
$\mathrm{C}(13)-\mathrm{O}(13)$	$1.09(5)$
$\mathrm{C}(21)-\mathrm{O}(21)$	$1.19(5)$
$\mathrm{C}(22)-\mathrm{O}(22)$	$1.10(5)$
$\mathrm{C}(23)-\mathrm{O}(23)$	$1 \cdot 17(5)$
$\mathrm{C}(24)-\mathrm{O}(24)$	$1.10(5)$
$\mathrm{C}(31)-\mathrm{O}(31)$	$1 \cdot 16(5)$
$\mathrm{C}(32)-\mathrm{O}(32)$	$1.24(5)$
$\mathrm{C}(33)-\mathrm{O}(33)$	$1.23(5)$
$\mathrm{Os}(1)-\mathrm{N}-\mathrm{C}(1)$	$145(1)$
$\mathrm{Os}(3)-\mathrm{N}-\mathrm{C}(1)$	$127(1)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$116(2)$
$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(24)$	$174(1)$
$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$	$105(1)$
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$	$91(1)$
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$	$93(1)$
$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$	$96(1)$
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(33)$	$91(1)$
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(32)$	$94(1)$
$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(33)$	$94(1)$

Fig. 1. A projection of the molecule showing the numbering system. If the CHCF_{3} group is discounted, the molecule has an approximate mirror plane of symmetry perpendicular to $\mathrm{Os}(1)-\mathrm{Os}(3)$ and passing through $\mathrm{Os}(2)$.
some extent due to the lack of an absorption correction,* but it is mainly caused by the radiation damage and consequent broadening of the diffraction peaks. The decomposition likewise is the cause of the general imprecision of the $\mathrm{Os}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths and the large values of B, especially for the atoms of the CF_{3} group. There was no evidence for disorder in the CF_{3} group.

Final positional and thermal parameters are given in Table 1. Selected bond lengths and angles are in Table 2. The stereochemistry and numbering systems are shown in Fig. 1.

Discussion. One hydrogen bridge has been attacked by the N of the nitrile group with the transfer of a H atom to the C atom and the formation of an $\mathrm{Os}-\mathrm{N}-\mathrm{Os}$ bridge. The length $\mathrm{N}-\mathrm{C}(1), 1.38 \AA$, and the angle $\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2), 116^{\circ}$, indicate that the bonding is suitably described as $\mathrm{N}=\mathrm{CH}-\mathrm{CF}_{3}$ with $\mathrm{C}(1) s p^{2}$ hybridized. Similar geometric bridging arrangements have been found in $\left|\mathrm{Mn}_{2}\left\{\mathrm{~N}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right\}\right|, \mathrm{N}-\mathrm{C}=$ $1.26 \AA$ (Churchill \& Lin, 1975), and $\left|\mathrm{Re}_{2}\left\{\mathrm{~N}=\mathrm{CHCH}_{3}\right\}\right|, \mathrm{N}-\mathrm{C}=1.39 \AA$ (Mays, Prest \& Raithby, 1980). The second H atom is assumed to remain in the bridge between $\mathrm{Os}(1)$ and $\mathrm{Os}(3)$, and the $\mathrm{Os}(1)-\mathrm{Os}(3)$ length of $2.803 \AA$ thus corresponds to a doubly-bridged bond.

The angle $\mathrm{Os}(1)-\mathrm{N}-\mathrm{C}(1)$ is opened up to relieve intramolecular compressions between the CF_{3} group and the carbonyls (11) and (12) on $\mathrm{Os}(1)$. Atoms $\mathrm{Os}(1), \mathrm{Os}(3), \mathrm{N}, \mathrm{C}(1)$ and $\mathrm{C}(2)$ are closely coplanar,

[^1]and the angle between this plane and that of the three Os atoms is 109°.

The Os-Os bond lengths ($2 \cdot 803,2 \cdot 838,2.842 \AA$) are similar to those found previously; e.g. in $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{CHCH}=\mathrm{NEt}_{2}\right)\right]$ the analogous lengths were $2.785,2.866$ and $2.870 \AA$ (Shapley, Tachikawa, Churchill \& Lashewycz, 1978). Os(2) has coordination number 6 , while $\mathrm{Os}(1)$ and $\mathrm{Os}(3)$ have coordination number 7 (including the hydrogen bridge). All three Os atoms obey the effective-atomic-number rule; $\mathrm{Os}(1)-\mathrm{Os}(2), \mathrm{Os}(3)-\mathrm{Os}(2)$ have a formal metalmetal bond order of $1 . \mathrm{Os}(1)-\mathrm{Os}(3)$ is shortened by the two bridging groups, as was found in $\left|\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right|$ itself where the bond lengths are $2 \cdot 683,2 \cdot 814,2 \cdot 815 \AA$ (Broach \& Williams, 1979).

The arrangement of the CO groups about $\mathrm{Os}(2)$ of the $\mathrm{Os}(\mathrm{CO})_{4}$ group is identical to that in $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)\right]$ (Orpen, Rivera, Bryan, Pippard, Sheldrick \& Rouse, 1978) and $\mid \mathrm{HOs}_{3}(\mathrm{CO})_{10}(p$ $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NC}(\mathrm{H}) \mathrm{O}\right)$ (Adams \& Golembeski, 1979) but differs from that in $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{CF}_{3} \mathrm{CCHCF}_{3}\right)\right]$ (Laing, Sommerville, Dawoodi, Mays \& Wheatley, 1978). In this latter compound, $\operatorname{Os}(2)$ is σ-bonded to a C atom, thus raising its coordination number to 7 while simultaneously forcing a change in orientation of the $\mathrm{Os}(\mathrm{CO})_{4}$ moiety. The angle $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$ in this compound clearly exceeds 90°, as does its geometric analogue in the present case, $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$, which is 105°.

ML thanks the South African Council for Scientific and Industrial Research for financial support and Dr G. Gafner, National Physical Research Laboratory, CSIR, for collecting the intensities. PJW thanks the University of Natal for a Visiting Lectureship, during the tenure of which this work was carried out.

References

Adams. R. D. \& Golembeski. N. M. (1979). J. Organomet. Chem. 171. C21-C26.
Broach, R. W. \& Williams, J. M. (1979). Inorg. Chem. 18. 314-318.
Churchill. M. R. \& Lin. K. G. (1975). Inorg. Chem. 14. 1675-1680.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-203. Birmingham: K ynoch Press.
Laing. M., Sommerville, P.. Dawoodi. Z., Mays. M. J. \& Wheatley. P. J. (1978). Chem. Commun. pp. 10351036.

Lipson. H. \& Cochran. W. (1966). The Determination of Cri'stal Structures. 3rd ed.. pp. 165-169. London: Bell.
Mays, M. J., Prest, D. W. \& Raithby, P. R. (1980). Chem. Commun. pp. 171-173.
Orpen. A. G.. Rivera. A. V.. Bryan. E. G.. Pippard. D.. Sheldrick. G. M. \& Rouse. K. D. (1978). Chein. Commun. pp. 723-724.
Shapley. J. R., Tachikawa. M.. Churchill. M. R. \& Lashewycz, R. A. (1978). J. Organomet. Chem. 162. C39-C42.

Acta Cryst. (1981). B37, 2232-2234

The Structure of Calcium Methanedisulfonate Trihydrate

By Anastas Karipides
Department of Chemistry, Miami University, Oxford, Ohio 45056, USA

(Received 27 March 1981; accepted 2 June 1981)

Abstract

Ca}\left(\mathrm{CH}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right], \mathrm{CH}_{8} \mathrm{CaO}_{9} \mathrm{~S}_{2}\), monoclinic, $P 2_{1} / n, a=5.777$ (1), $b=19.469$ (4), $c=$ 7.748 (2) $\AA, \beta=92.98(2)^{\circ}, V=870.3 \AA^{3}, Z=4$, $d_{c}=2.05, d_{m}=2.03 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo $K a)=1.2 \mathrm{~mm}^{-1}$, $R=0.033$ and $R_{w}=0.051$ for 1451 counter-collected reflections. The sevenfold, approximately pentagonal bipyramidal, coordination polyhedron around the Ca^{2+} ion consists of three water molecules and four sulfonate O atoms from three different methanedisulfonate ions. The methanedisulfonate ligand binds one Ca^{2+} ion forming a six-membered chelate ring and is linked to two other Ca^{2+} ions by unidentate bridging bonds. The ligand occurs in a conformation which has approximate $C_{2 v}$ symmetry.

Introduction. Colorless single crystals were readily grown by evaporation from an aqueous solution of the 1:1 salt. From indexed Weissenberg photographs the crystals were found to be monoclinic and the systematic absences $h+l$ odd for $h 0 l$ and k odd for $0 k 0$ indicated space group $P 2_{1} / n$ |a non-standard setting for $P 2_{1} / c$ with general positions $\pm\left(x, l, z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+\right.$ $z)$. A single crystal with approximate dimensions 0.3 $\times 0.3 \times 0.2 \mathrm{~mm}$ was used to collect accurate unit-cell parameters as well as three-dimensional X-ray intensity data on an automated diffractometer. A total of 1578 data out to $2 \theta=50^{\circ}$ were collected using Mo Ka radiation and the $\theta-2 \theta$ scan technique.

The raw intensity data were assigned e.s.d.'s from © 198I International Union of Crystallography

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36201 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography. 5 Abbey Square. Chester CHI 2HU, England.
 (C) 1981 International Union of Crystallography

[^1]: * Experience with similar compounds in the past has shown that omission of an absorption correction has little effect on the final positional parameters. The error is taken up in the thermal parameters.

